COURSE UNIT TITLE

: INTRODUCTION TO CLASSICAL TEST THEORY

Description of Individual Course Units

Course Unit Code Course Unit Title Type Of Course D U L ECTS
PSI 5081 INTRODUCTION TO CLASSICAL TEST THEORY ELECTIVE 3 0 0 9

Offered By

PSYCHOLOGY

Level of Course Unit

Second Cycle Programmes (Master's Degree)

Course Coordinator

ASSOCIATE PROFESSOR DUYGU GÜNGÖR CULHA

Offered to

PSYCHOLOGY

Course Objective

The goal of this course is to introduce students the statistical programming R.

Learning Outcomes of the Course Unit

1   Describing the syntax of the R programming language
2   Using different data types properly
3   Using functions for data visualization and graphics
4   Using control structures
5   Doing fundamental psychometric analysis using the R packages
6   Doing a Monte Carlo simulation study using R

Mode of Delivery

Face -to- Face

Prerequisites and Co-requisites

None

Recomended Optional Programme Components

None

Course Contents

Week Subject Description
1 Introduction to R environment
2 Introduction to R environment
3 Data structures
4 Data Import and export, data manipulations
5 Data Import and export, data manipulations
6 Built-in functions
7 Midterm
8 Graphic functions
9 Psychometrics packages
10 Psychometrics packages
11 Psychometrics packages
12 Monte Carlo simulation studies
13 Monte Carlo simulation studies
14 Monte Carlo simulation studies

Recomended or Required Reading

1. Braun W.J., Murdoch D.J., A First Course in Statistical Programming with R, Cambridge, 2009.
2. Matloff N., The Art of R programming, 2011.

Planned Learning Activities and Teaching Methods

Lecture
Answer-Question
Presentation
Discussion

Assessment Methods

SORTING NUMBER SHORT CODE LONG CODE FORMULA
1 MTE MIDTERM EXAM
2 STT TERM WORK (SEMESTER)
3 FIN FINAL EXAM
4 FCG FINAL COURSE GRADE MTE * 0.30 + STT * 0.30 + FIN* 0.40
5 RST RESIT
6 FCGR FINAL COURSE GRADE (RESIT) MTE * 0.30 + STT * 0.30 + RST* 0.40


*** Resit Exam is Not Administered in Institutions Where Resit is not Applicable.

Further Notes About Assessment Methods

Presentations, Midterm and Final Exams

Assessment Criteria

1. LO 1-2: They will be evaluated by the questions in midterm examination.
2. LO 3-6: They will be evaluated by the questions in final exam.

Language of Instruction

English

Course Policies and Rules

Attendance must be at least 70% for lecture.

Contact Details for the Lecturer(s)

Doç. Dr. Duygu Güngör Culha
duygu.gungor@deu.edu.tr

Office Hours

Fri: 14.00-15.00

Work Placement(s)

None

Workload Calculation

Activities Number Time (hours) Total Work Load (hours)
Lecture 13 3 39
Preparation before-after PBL/lectures 13 7 91
Preparation for midterm exam 1 10 10
Preparation for final exam 1 14 14
Preparing presentations 13 5 65
Final exam 1 3 3
Midterm exam 1 3 3
TOTAL WORKLOAD (hours) 225

Contribution of Learning Outcomes to Programme Outcomes

PO/LOPO.1PO.2PO.3PO.4PO.5PO.6
LO.1555545
LO.255545
LO.355344
LO.4555545
LO.5555545
LO.654555