DERS ADI

: Bağıl Homolojik Cebir

Ders Bilgileri

Ders Kodu Ders Adı Ders Türü D U L AKTS
MAT 6058 Bağıl Homolojik Cebir SEÇMELİ 3 0 0 8

Dersi Veren Birim

Fen Bilimleri Enstitüsü

Dersin Düzeyi

Yüksek Lisans

Ders Koordinatörü

DOÇ. DR. ENGİN MERMUT

Dersi Alan Birimler

Matematik Yüksek Lisans (İngilizce)
Matematik Doktora (İngilizce)

Dersin Amacı

Bu dersin amacı, bağıl homoloji cebirinde temel teknik ve yöntemleri tanıtmaktır.

Dersin Öğrenme Kazanımları

1   Değişmeli bölgeler üzerinde modüllerin burulmasız örtülerinin varlığı ispatının arkasındaki fikri genelleştirebilme.
2   Bir modüller sınıfı için genel olarak örtüler ve bürümlerin tanımlarını anlayabilme.
3   Keyfi bir halka için, modüllerin düz örtülerinin varlığını kanıtlamada eşburulma teorilerinin nasıl kullanıldığını anlayabilme.
4   Iwanaga-Gorenstein ve Cohen-Macaulay halkalarının ve modüllerinin özelliklerini kullanabilme.
5   Gorenstein örtüler ve bürümlerin bazı farklı türlerini analiz edebilme.

Dersin Öğretim Türü

Örgün Öğretim

Dersin Önkoşulu/Önkoşulları

Yok

Ders İçin Önerilen Diğer Hususlar

Yok

Ders İçeriği

Hafta Konular Açıklama
1 Modüllerin kompleksleri ve homoloji. Direk ve ters limitler. I-adic topoloji ve tamamlamalar.
2 Modülerin burulmasız örtüleri. Örnekler.
3 F-önörtüler ve örtüler. Örtülerin direk toplamları. Projektif, düz ve injektif örtüler.
4 F-önbürümler ve bürümler. Bürümlerin direk toplamları. Düz ve pür-injektif bürümler.
5 Liflemeler, eşliflemeler ve Wakamatsu lemmaları. Küme teorik homoloji cebiri. Eşburulma teorileri.
6 Sol ve sağ F-çözünürlükler. Türetilmiş funktorlar ve denge.
7 F-boyutlar.
8 Düz modüllerin minimal pür-injektif çözünürlüğü.
9 Iwanaga-Gorenstein halkalar. Gorenstein olan bir değişmeli Noether halkasının minimal injektif çözünürlüğü.
10 İnjektif modüllerin burulma çarpımları. Yerel kohomoloji ve dualizing modül.
11 Gorenstein injektif, Gorenstein projektif ve Gorenstein düz modüller.
12 Gorenstein injektif örtüler ve bürümler.
13 Gorenstein projektif ve Gorenstein düz örtüler. Gorenstein düz ve projektif önbürümler. Kaplansky sınıfları.
14 Gorenstein ve Cohen-Macaulay halkaları üzerinde denge.

Ders İçin Önerilen Kaynaklar

[1] Edgar E. Enochs and Overtoun M. G. Jenda. Relative Homological Algebra. Walter de Gruyter, 2000.
[2] Jinzhong Xu. Flat covers of modules. Springer, 1996.

Diğer ders materyalleri: Öğretim üyesinin ders notları ve sunumları

Öğrenme ve Öğretme Yöntemleri

Ders notları, sunum, problem çözme, tartışma.

Değerlendirme Yöntemleri

SIRA NO KISA KOD UZUN ADI FORMUL
1 ODV ÖDEV
2 ARS ARASINAV
3 YSS YIL SONU SINAVI
4 YSBN YIL SONU BAŞARI NOTU ODV * 0.30 + ARS * 0.30 + YSS * 0.40
5 BUT BÜTÜNLEME
6 BUTBN BÜTÜNLEME SONU BAŞARI NOTU ODV * 0.30 + ARS * 0.30 + BUT * 0.40


Değerlendirme Yöntemlerine İliskin Aciklamalar

Ödev
1 Ara sınav
Final sınavı

Değerlendirme Kriteri

%30 (Ödev) + %30 (Ara sınav) + %40 (Final sınavı)

Dersin Öğretim Dili

İngilizce

Derse İlişkin Politika ve Kurallar

Her hafta işlenecek konularla ilgili ders kitaplarınızdan ve verilen ders notlarından çalışmanız, verilen problemleri çözerek derse gelmeniz ve anlamadığınız kısımlarda sorularınızla tartışarak kavramları oturtmanız, metotları öğrenmeniz, derse aktif katılımınız, bu derste başarılı olmanızı sağlayacaktır.

Dersin Öğretim Üyesi İletişim Bilgileri

Engin Mermut
e-posta: engin.mermut@deu.edu.tr
Telefon: (232) 301 85 82

Ders Öğretim Üyesi Görüşme Gün ve Saatleri

Daha sonra duyurulacaktır.

Staj Durumu

YOK

İş Yükü Hesaplaması

Etkinlikler Sayısı Süresi (saat) Toplam İş Yükü (saat)
Ders Anlatımı 14 3 42
Haftalık Ders öncesi/sonrası hazırlıklar 14 5 70
Vize Sınavına Hazırlık 1 15 15
Final Sınavına Hazırlık 1 25 25
Ödev Hazırlama 8 5 40
Final Sınavı 1 3 3
Vize Sınavı 1 3 3
TOPLAM İŞ YÜKÜ (saat) 198

Program ve Öğrenme Kazanımları İlişkisi

PK/ÖKPK.1PK.2PK.3PK.4PK.5PK.6PK.7PK.8PK.9PK.10PK.11
ÖK.143344433
ÖK.243344433
ÖK.343344433
ÖK.443344433
ÖK.543344433