# COURSE UNIT TITLE

: FINITE ELEMENT METHODS

#### Description of Individual Course Units

Course Unit Code Course Unit Title Type Of Course D U L ECTS
MEE 5038 FINITE ELEMENT METHODS ELECTIVE 3 0 0 8

#### Offered By

Graduate School of Natural and Applied Sciences

#### Level of Course Unit

Second Cycle Programmes (Master's Degree)

#### Course Coordinator

PROFESSOR RAMAZAN KARAKUZU

#### Offered to

DESIGN AND PRODUCTION
M.Sc. Metallurgical and Material Engineering
Design and Production
Mechanics
Mechanics
Metallurgical and Material Engineering

#### Course Objective

The objective of this course is to give finite element formulation, modelling and solution methods to solve engineering problems numerically.

#### Learning Outcomes of the Course Unit

 1 To describe the engineering problems 2 To distinguish the engineering problems (one-dimensional, two-dimensional, three-dimensional) 3 To model engineering problems 4 To solve an engineering problems by using a finite element software 5 To appraise the results of a finite element model

Face -to- Face

None

None

#### Course Contents

 Week Subject Description 1 Introduction, Stresses and Equilibrium, Boundary Conditions, Strain-Displacement Relations, stress-Strain Relations, Temperature effect, Potential Energy and Equilibrium 2 Finite Element Modeling, Coordinates and Shape Functions 3 The Potential Energy Approach, Assembly of the Global Stiffness Matrix and Load Vector, Properties of K 4 The Finite Element Equations; Treatment of Boundary Conditions 5 Quadratic Shape Functions, Temperature Effects 6 Trusses, Plane Trusses, Three- Dimensional Trusses 7 Two- Dimensional Problems Using Constant Strain Triangles, Finite Element Modeling, Constant Strain Triangles (CST) 8 Problem Modeling and Boundary Conditions 9 Mid-term Examination 10 Axisymmetric Solids Subjected to Axisymmetric Loading, Axisymmetric Formulation, Finite Element Modeling 11 Problem Modeling and Boundary Conditions 12 Two- Dimensional Isoparametric Elements and Numerical Integration, The Four Node Quadrilateral, Numerical Integration 13 High- Order Elements 14 Three- Dimensional Problems in Stress Analysis, Finite Element Formulation, Stress Calculations, Mesh Preparation, Hexahedral Elements and High Order Elements, Problem Modeling

Introduction to Finite Elements in Engineering (Third Edition), Tirupathi R. Chandrupatla, Ashok D. Belegundui, Prentice Hall, 0-13-061591-9, New Jersey, 2002.

#### Planned Learning Activities and Teaching Methods

Theoretical knowledge is given associated with finite element formulation, modeling of problems and solution methods. Numerical examples are given for better understanding of theory. Homework is given by using a package program.

#### Assessment Methods

 SORTING NUMBER SHORT CODE LONG CODE FORMULA 1 MTE MIDTERM EXAM 2 ASG ASSIGNMENT 3 FIN FINAL EXAM 4 FCG FINAL COURSE GRADE MTE * 0.20 + ASG * 0.40 + FIN * 0.40 5 RST RESIT 6 FCGR FINAL COURSE GRADE (RESIT) MTE * 0.20 + ASG * 0.40 + RST * 0.40

None

To be announced.

English

To be announced.

#### Contact Details for the Lecturer(s)

ramazan.karakuzu@deu.edu.tr

To be announced.

None