# COURSE UNIT TITLE

: CALCULUS III

#### Description of Individual Course Units

Course Unit Code Course Unit Title Type Of Course D U L ECTS
MAT 2011 CALCULUS III COMPULSORY 4 0 0 4

#### Offered By

Faculty of Engineering

#### Level of Course Unit

First Cycle Programmes (Bachelor's Degree)

#### Course Coordinator

PROFESSOR SEVAL ÇATAL

#### Offered to

Mining Engineering
Geophysical Engineering
Mechanical Engineering
Civil Engineering
Mechanical Engineering
Civil Engineering
Environmental Engineering
Mining Engineering
Geological Engineering
Geological Engineering
Metallurgical and Materials Engineering
Industrial Engineering

#### Course Objective

To define ,to solve, classifications and applications of differential equations

#### Learning Outcomes of the Course Unit

 1 To define and classifications of differential equations 2 To solve first order differential equations 3 Applications of first order differential equations 4 To solve higher order differential equations 5 Applications of higher order differential equations

Face -to- Face

None

None

#### Course Contents

 Week Subject Description 1 Introduction to differential equations, Definition and classifications of differential equations 2 First order differential equations, separations of variable differential equations 3 Linear differential equations, homogen differential equations 4 Exact differential equations, Integral multipliers, non-linear differential equations Envelopes 5 Higher degree first order differential equations, Envelopes , etc. 6 Application of first order differential equations for geometric and physical problems 7 Higher order differential equations and their solutions Linear independency, wronskian,etc.. 8 1st midterm 9 Higher order non-homogen differential equations and their solutions: Undetermined Coefficients method, Lagrange method 10 Operator Method, Cauchy-Euler differential equation Legendre differential equation 11 Power series , Solutions of differential equations with power series, Fourier series 12 Laplace transformation method for solving differential equations 13 2nd.midterm 14 Application of differential equations, Solutions of the system of differential equations with operator method and Laplace transformation methods

Akyıldız, E.T., Alpay, Ş., Erkip, A. (1990) .Differential Equations, Şafak Matbaacılık, Ankara.
Kreyszig, E. (1993) .Advanced Engineering Mathematics, John Wiley&Sons. Inc, New York.
Ayres, F. (1978). Differential Equations, Schaums Outline Series, Mc-Graw-Hill Book Company, New York.

#### Planned Learning Activities and Teaching Methods

Books, presentations and homeworks, midterm exams, final exam.

#### Assessment Methods

 SORTING NUMBER SHORT CODE LONG CODE FORMULA 1 MTE1 MIDTERM EXAM 1 2 MTE2 MIDTERM EXAM 2 3 FIN FINAL EXAM 4 FCG FINAL COURSE GRADE MTE1 * 0.25 + MTE2 * 0.25 + FIN * 0.50 5 RST RESIT 6 FCGR FINAL COURSE GRADE (RESIT) MTE1 * 0.25 + MTE2 * 0.25 + RST * 0.50

None

#### Assessment Criteria

PO 1-5: Evaluated by midterm and final questions.

Turkish

#### Course Policies and Rules

Attendance will be considered in the evaluation.

#### Contact Details for the Lecturer(s)

ASSOC.DR.SEVAL ÇATAL
seval.catal@deu.edu.tr

#### Office Hours

FRIDAY: 10:00-12:00

None